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ABSTRACT

Convective-core overshoot mixing is a significant uncertainty in stellar evolution. Because numerical simulations and

turbulent convection models predict exponentially decreasing radial rms turbulent velocity, a popular treatment of

the overshoot mixing is to apply a diffusion process with exponentially decreasing diffusion coefficient. It is important

to investigate the parameters of the diffusion coefficient because they determine the efficiency of the mixing in the

overshoot region. In this paper, we have investigated the effects of the core overshoot mixing on the properties of the

core in solar models and have constrained the parameters of the overshoot model by using helioseismic inferences and

the observation of the solar 8B neutrino flux. For solar-mass stars, the core overshoot mixing helps to prolong the

lifetime of the convective core developed at the ZAMS. If the strength of the mixing is sufficiently high, the convective

core in a solar model could survive till the present solar age, leading to large deviations of the sound-speed and density

profiles comparing with the helioseismic inferences. The 8B neutrino flux also favours a radiative solar core. Those

provide a constraint on the parameters of the exponential diffusion model of the convective overshoot mixing. A

limited asteroseismic investigation of 13 Kepler low-mass stars with 1.0 < M/M⊙ < 1.5 shows a mass-dependent

range of the overshoot parameter. The overshoot mixing processes for different elements are analyzed in detail. It is

found that the exponential diffusion overshoot model leads to different effective overshoot mixing lengths for elements

with different nuclear equilibrium timescale.

Key words: convection – Sun: helioseismology – Sun: interior

1 INTRODUCTION

There is a convective core in the main-sequence stars with
mass higher than 1 to 1.1M⊙ (depending on metallicity).
The convection mixes nuclear fuels in the core, playing an
important role to determine the structure and the lifetime
of the star. The presence of convection is controlled by
∇R = (d lnT/d lnP )R, the gradient of temperature T with
respect to pressure P required to transport the energy by ra-
diation, and the corresponding adiabatic gradient ∇ad. In the
region where ∇R ≥ ∇ad, the radiative temperature gradient
would lead to convective instability and convection sets in,
transporting the excess energy flux beyond the capacity of
radiation. However, the details of the motion in the adjacent
region with ∇R < ∇ad are not clear.

In a classical phenomenological point of view, a fluid ele-
ment is always accelerated in the convection zone; thus it can-
not stop at the convective boundary where ∇R = ∇ad. The

⋆ E-mail: zqs@ynao.ac.cn (QSZ)

fluid elements penetrating into the radiative region is called
the convective overshoot. In the classical overshoot models
(e.g., Shaviv & Salpeter 1973; Maeder 1975; Bressan et al.
1981; Zahn 1991), the focus is on how far a penetrating fluid
element can move, which is considered as the extent of the
overshoot region, and the whole convection zone and the over-
shoot region are assumed to be fully mixed. The main prop-
erties of those models are as follows (Zahn 1991). The radial
velocity and the temperature fluctuation in the overshoot re-
gion should be strongly correlated. The temperature gradi-
ent in the overshoot region should be slightly less than the
adiabatic temperature gradient ∇ad due to the high Péclet
number Pe, i.e., the ratio between the turbulent diffusivity
and the radiative thermal diffusivity. The boundary of the
overshoot region is located near Pe = 1. The temperature
gradient quickly changes from ∇ad to ∇R.

In the hydrodynamical point of view (Zhang 2013), the
convective overshoot should be regarded as an overshoot of
the turbulent kinetic energy rather than the fluid elements,
and the extent of the overshoot region should be significantly
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2 Q.-S. Zhang et al.

larger than the penetrating distance of a penetrating fluid ele-
ment because the penetrating fluid element should disturb the

local fluid elements and result in extended transport of turbu-

lent kinetic energy. The temperature gradient is determined
by the entropy mixing of the fluid elements gaining kinetic
energy from the overshoot of kinetic energy. Due to buoyancy
braking, the characteristic size of the fluid elements is

√
k/N

with k the turbulent kinetic energy and N the Brunt-Väisälä
frequency, which is not large enough to ensure a high effi-
ciency of entropy mixing. Therefore the temperature gradient
in the overshoot region is close to ∇R, and the radial veloc-
ity and the temperature fluctuation in the overshoot region
should be weakly correlated. In this scenario, the overshoot
mixing can be regarded as a diffusion process (Zhang 2013).
On the other hand, numerical simulations of stellar convec-
tion show more complicated behaviours of the convective
overshoot. It is found that the turbulent entrainment exists
near the convective boundary, leading to a convective bound-
ary mixing (e.g., Meakin & Arnett 2007; Arnett et al. 2015;
Cristini et al. 2017, 2019). This convective process cannot be
regarded by a diffusion approximation. In the convective mix-
ing model by Zhang (2013), spherical symmetry is adopted,
leading to zero mean velocity. Therefore the contributions to
the variation of abundances and the chemical flux by the
mean field including a turbulent entrainment are ignored.
The entrainment velocity satisfies a turbulent-entrainment
law depending on conditions (e.g., Fernando 1991), leading to
varied strength for stellar models with different stellar mass
(e.g., Staritsin 2013, 2014; Scott et al. 2021).

The differences between the classical phenomenological
overshoot models and the hydrodynamical turbulent con-
vection models are significant and they should been bench-
marked by numerical simulations. The weak correlation be-
tween the radial velocity and the temperature fluctuation in
the overshoot region has been confirmed by numerical simula-
tions (Singh et al. 1995; Meakin & Arnett 2007). Numerical
simulations of convective overshoot (Brummell et al. 2002)
have shown that the overshoot region is not adiabatically
stratified even for Pe ≫ 1. Recent numerical simulations by
Cai (2020a,b,c,d) have comprehensively investigated the up-
ward overshoot and shown that the details of the convective
status and the structure of the overshoot region predicted
by the stellar turbulent convection model (Zhang & Li 2012)
show overall consistency with the result of numerical simula-
tions, while the classical overshoot model is not. Helioseismic
investigation of the layer beneath the base of the solar con-
vection zone has also concluded that the required tempera-
ture gradient favours the hydrodynamical turbulent convec-
tion models (Christensen-Dalsgaard et al. 2011).

For the diffusion model of overshoot mixing, numerical
simulations (Freytag et al. 1996) and turbulent convection
models (Xiong 1989; Xiong & Deng 2002; Zhang & Li 2012;
Zhang 2013) have predicted an exponentially decreasing dif-
fusion coefficient. For an exponential diffusion coefficient,
there are two parameters, i.e., the initial diffusion coefficient
and the index of the exponential function. The initial dif-
fusion coefficient is usually assumed to be the typical value
of the diffusion coefficient in the convection zone near the
convective boundary. Here we note that the assumption may
not hold. In a widely used diffusion model (Herwig 2000),
the value of the index has been given by the calibration of
the width of the main sequence on the HR diagram. On

the other hand, overshoot calibrations on eclipsing binary
systems (e.g., Ribas et al. 2000; Claret & Torres 2016, 2017,
2018, 2019) have shown that the strength of overshoot mix-
ing depends on stellar mass, especially for low-mass stars.
Further information about overshoot is provided by aster-
oseismic investigations (for a review, see Deheuvels 2019).
Such analysis of low-mass stars has suggested a smaller over-
shoot region (Deheuvels et al. 2016). Therefore it is necessary
to investigate the overshoot parameter in low-mass stars. It
is well-known that a solar-mass star has a convective core
at the ZAMS stage, and the overshoot mixing can prolong
the lifetime of the convective core because of the extra mix-
ing brings 3He into the core (e.g., Shaviv & Salpeter 1971;
Roxburgh 1985; Deheuvels et al. 2010; Buldgen et al. 2019a).
If the convective core survives at the present solar age in a
solar model, it was found that the sound-speed deviation in
the core is significant and the 7Be and 8B neutrino fluxes
are reduced (e.g., Richard & Vauclair 1996; Schlattl & Weiss
1999; Shaviv & Salpeter 1971; Cumming & Haxton 1996;
DeglÌnnocenti & Ricci 1998).

Asteroseismology is an advantageous tool to probe the core
overshoot mixing because the oscillation frequencies are di-
rectly affected by the stellar interior. Moravveji et al. (2015)
investigated the 3M⊙ star KIC10526294 and found that
the diffusive mixing is better than the classical step mixing
in fitting the frequencies of the observed oscillation modes.
Yang et al. (2015) found a rather large overshoot region in
the asteroseismic investigation of KIC2837475 by using ratios
between small and large frequency separations. In contrast,
Wu et al. (2020) found very weak mixing outside the convec-
tive core in the asteroseismic investigation of KIC8324482.
For central helium burning stars, investigations of the os-
cillation period spacing favour a moderate overshoot region
(Bossini et al. 2015, 2017), which is obviously different from
the case of the main sequence stars. Noll et al. (2021) found
strong evidence for convective-core overshoot in their astero-
seismic investigation of the subgiant KIC10273246, while dif-
fusive mixing showed no clear improvement over the classical
treatment. On the other hand, other mixing mechanisms in-
cluding rotation mixing and turbulent entrainment could also
be required to explain observations (see, e.g., Saio et al. 2021;
Pedersen et al. 2021; Johnston 2021), leading to systematic
uncertainties of probing the core overshoot mixing. We also
note that even in a normal asteroseismic investigation with
least-χ2 method of fitting all frequencies, the details in the
numerical calculations such as the time step can significantly
affect the χ2 of frequencies (Wu & Li 2016), and hence the
inferences about overshoot.

In this paper, we will investigate the effect of a new formula
for the convective core overshoot mixing on solar models and
some solar-mass stars. Our results show that the convective
core survives in the solar model to the present solar age when
the overshoot mixing is sufficiently strong. This leads to sig-
natures in the sound-speed and density profiles and the 8B
neutrino flux that can be benchmarked by comparing model
properties with observations. The range of model parameters
for some Kepler solar-mass stars is investigated via a limited
asteroseismic investigation by using the frequency separation
ratios.

MNRAS 000, 1–19 (2020)



Core overshoot of the solar convective core 3

2 INPUT PHYSICS OF SOLAR MODELS

2.1 Standard input physics of solar models

Solar models are calculated by using the YNEV code (Zhang
2015). The element abundances are based on the AGSS09
(Asplund et al. 2009) solar photosphere composition and the
∼ 40% upward revision of Ne abundance (Young 2018;
Asplund et al. 2021). This is denoted as A09Ne composi-
tion in this paper, which leads to (Z/X)s = 0.0188 ±
0.0012 (Zhang et al. 2019). The thermodynamical functions
are interpolated from the OPAL equation of state tables
(Rogers & Nayfonov 2002). The opacities are interpolated
from the OPAL tables (Iglesias & Rogers 1996) at high tem-
perature and the Ferguson et al. (2005) opacity tables at low
temperature. Nuclear reaction cross sections are based on
SFII (Adelberger et al. 2011), enhanced by weak screening
(Salpeter 1954). Molecular diffusion in the screening case
(Zhang 2017) is taken into account. The temperature gra-
dient in the convection zone is calculated by using the stan-
dard mixing-length theory. The K-S relation (Krishna Swamy
1966) between temperature and optical depth in the solar at-
mosphere is adopted.

2.2 Models of convective core overshoot mixing

The only extra physical process outside the framework of
standard solar models taken into account is the overshoot
mixing outside the convective core, which appears in solar
models at the zero-age main sequence (ZAMS). We inves-
tigate two kinds of models of the convective-core overshoot
mixing.

The first is an exponential diffusion overshoot model
(EDOM) with the diffusion coefficient in the overshoot re-
gion defined as

D = CD0

(

P

Pcz

)θ

, (1)

where C and θ are dimensionless model parameters, P is
pressure and Pcz is the value at the boundary of the con-
vective core, D0 is the typical diffusion coefficient in the
convective core near the convective boundary. D0 is calcu-
lated as D0 = u(r∗)l(r∗)/3, where l = αHP is the mix-
ing length, u is the mean turbulent speed calculated by the
MLT, HP = P/(ρg) is the local scaleheight of the pressure
P , ρ is the density, g is the local gravitational acceleration,
r∗ = rcz − d, rcz is the radius at the convective boundary,
and d is a distance (0.1HP in default). The reason of adopt-
ing u(r∗) as the typical turbulent speed at the boundary is
that the local MLT gives u(rcz) = 0 and the nonlocal ef-
fects of convection should be significant near the convective
boundary.

The second is the classical overshoot model (COM), i.e.,
assuming an overshoot region with the length

lov = αovmin(HP , rcz) (2)

outside the convective core, where αov is a free parameter.
The diffusion coefficient in this model is not assumed to be
infinite in the convective core and the overshoot region. The
inappropriateness of setting infinite diffusion coefficient will
be discussed in the Appendix. The diffusion coefficient is cal-
culated as D = u(r)l(r)/3 by using the MLT for r < r∗ and
assumed to be D = D(r∗) near the convective boundary and

in the overshoot region, i.e., for r∗ < r < rcz + lov. In this
case, the diffusion coefficient in the convection core and the
overshoot region in solar models is about 1013−1014 cm2 s−1,
ensuring that the convective core and the overshoot region are
efficiently mixed for the great majority of elements. There is
another choice in the classical model: setting lov = αovHP .
However, for solar-mass stars, it is not a good choice. As the
convective core retreats and finally vanishes, HP at the con-
vective boundary and lov become larger and larger. That is
physically unreasonable.

As discussed in the Appendix, the EDOM diffusive mixing
can also be characterized by an effective overshoot mixing
length (denoted as lov,dif). A main difference between the
COM and the EDOM is that in the EDOM lov,dif increases
with the increase of stellar age because l2ov,dif ∝ Dt, which
means that the low-D region far away from the convective
boundary will finally lead to significant mixing if the stellar
lifetime is long enough, while lov in the classical overshoot
model is constant. Another difference is that the COM results
in a discontinuity of the abundance profile after the convec-
tive core reaches its maximum. In contrast, the EDOM leads
to a smooth abundance profile.

For both overshoot models we assume that the temperature
gradient is purely radiative in the overshoot region.

2.3 On the exponential diffusion overshoot model

Theoretical analysis of the convective mixing has shown that
the convective/overshoot mixing can be regarded as a macro-
scopic diffusion process (Zhang 2013). Numerical simula-
tion (Freytag et al. 1996) and non-local turbulent convection
models (e.g., Xiong 1989; Xiong & Deng 2002; Deng et al.
2006; Zhang & Li 2012; Li 2017) have predicted exponen-
tially decreasing turbulent rms speed. Therefore it is reason-
able to regarded the overshoot mixing as a diffusive process
with an exponentially decreasing diffusion coefficient. For an
exponential function, there are two free parameters, i.e., the
initial value and the e-folding length. Therefore equation (1)
is a universal formula for an exponentially decreasing diffu-
sion coefficient in a convective overshoot region. Comparing
the model (i.e., equation (1)) with the widely used formula of
the diffusion coefficient of overshoot (Herwig 2000) adopted
in the MESA code (Paxton et al. 2011), i.e.,

D = D0 exp

(

−2 |r − rcz|
fovHP

)

, (3)

the parameter θ in equation (1) is related to fov because

exp

(

−2 |r − rcz|
fovHP

)

≈ exp



− 2

fov

r
∫

rcz

dr

HP



 (4)

= exp

(

2

fov
ln

P

Pcz

)

=

(

P

Pcz

)2/fov

,

which shows that the e-folding lengths of the diffusion coeffi-
cient in the two models are similar when θ = 2/fov . The above
derivation replaced HP at the convective boundary by the lo-
cal HP as a function of r. This approximation generally holds
because fov ≪ 1 (Herwig recommends fov ≃ 0.016) leads to a
quick decrease of D near the convective boundary so that the
region in which D is high enough to result in an efficient mix-
ing is narrow and in this narrow region HP changes little. The
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difference between equation (1) and Herwig’s (2000) model is
the parameter C in equation (1). In Herwig’s model, C is set
to be 1, i.e., the initial value of the exponentially decreasing
diffusion coefficient is set as the typical diffusion coefficient in
the convection zone near the convective boundary. However,
in equation (1), C is not fixed a priori. In the following we
provide a physical justification for the possible variation of C
from 1.

The diffusion coefficient depends strongly on the radial
characteristic length of convection, which could significantly
change near the convective boundary because the stellar con-
vection is driven by buoyancy that changes sign at the con-
vective boundary. In the convectively unstable zone, buoy-
ancy helps radial convection; thus a large radial characteris-
tic length could be expected. Even in a slightly sub-adiabatic
overshoot region (if it exists), the buoyancy is weak since it
is proportional to ∇ − ∇ad. Therefore we can also expect
that a large characteristic length could be kept although the
buoyancy prevents convective movement. However, in a sig-
nificantly sub-adiabatic overshoot region in which ∇ ≈ ∇R,
a strong buoyancy brakes radial convective motion and then
significantly reduces the radial characteristic length. There-
fore, the radial characteristic length should significantly de-
crease near the convective boundary (or the boundary of the
nearly adiabatic overshoot region).

The relation between convective heat transport and mix-
ing of material has been discussed in Zhang (2013). Let us
recall the conditions of high Péclet number Pe = λturb/λT

and high diffusivity ratio τ = λT /λµ, where λturb is the tur-
bulent diffusivity, λT is the thermal diffusivity, and λµ is the
compositional diffusivity, respectively. Those conditions hold
in most of the overshoot region in the deep stellar interior.
In this case, both the timescale of radiative heat transport
and the timescale of molecular diffusion are much longer than
the timescale of turbulent dissipation so that a fluid element
keeps its entropy and abundance (δS = 0 and δXi = 0) in
the convective motion. The convective heat transport can be
thought as the result of mixing of entropy, which is revealed in
the energy conservation equation in the hydrodynamic equa-
tions. The convective heat transport and mixing of material
are two results of the pure mechanical mixing caused by tur-
bulent dissipation. In the case of both δS and δXi are zero,
the mixing of entropy and the mixing of material are therefore
strongly correlated.

The discussion above indicates that the diffusion coeffi-
cient should significantly vary near the convective boundary
or the boundary of adiabatic overshoot region (if it exists).
Therefore the initial diffusion coefficient of the exponential
formula equation (1) used in the overshoot region could be
much smaller than the typical diffusion coefficient in convec-
tion zone, i.e., C ≪ 1.

Comparing with the widely used model in equation (3),
there is another advantage of the model in equation (1).
When the convective core shrinks to nothing, HP becomes
very large (HP → ∞ for Mcz → 0), and equation (3) would
suddenly lead to a strong overshoot that significantly re-
freshes the nuclear fuel in the core and extends the size of the
core. This leads to an instability in the calculation of stellar
evolution because the diffusion coefficient far away from the
convective core is suddenly enhanced when HP → ∞. This
instability does not exist when the model in equation (1) is
adopted because it ensures that the diffusion coefficient de-

creases sufficiently in the region far away from the core, even
for HP → ∞.

3 PRESENCE OF A CONVECTIVE CORE IN

SOLAR MODELS

Before we show the results for the solar models, it is necessary
to investigate the existence of a convective core and its rela-
tionship with convective overshoot mixing. The determining
factor is that

∇R ∝ ǫ = Lr/Mr , (5)

where ǫ is the mean energy release rate and Lr and Mr

are luminosity and enclosed mass at radius r. This is deter-
mined by the temperature sensitivity of the energy generation
rate, η = ∂ ln ǫ/∂ lnT . When η is high, energy generation is
strongly concentrated towards the centre, leading to a high
ǫ and hence a tendency towards convective instability (see
also Roxburgh 1985). On the other hand, in normal models
of the present Sun, energy generation is dominated by the p-p

chain operating in nuclear equilibrium, with η ≈ 4, resulting
in convective stability.

3.1 The convective core in ZAMS solar models

The reason of the existence of a convective core in solar-
mass stars at ZAMS has already been clearly investigated
(e.g., Deheuvels et al. 2010). It can be summarized as follows.
As a solar-mass PMS star evolves toward the main-sequence
stage, the core temperature of the star increases. Near the
ZAMS stage, the core temperature is high enough to drive
the proton-capture reactions of 12C and the fusion of 3He.
Since they are more sensitive to temperature than the equi-
librium p-p chain, according to the argument given above a
convective core appears. However, as the initial 12C and 3He
have almost depleted and reached its equilibrium abundance
in about ∼ 100 Myr, η decreases to the value for the equilib-
rium p-p chains. As a result, the convective core caused by
the burning of initial 12C and 3He vanishes in a short time
in standard solar model, which is shown in Fig. 1 with the
black solid line.

3.2 The effects of overshoot mixing on the

convective core

As shown in Fig. 1, the convective core is larger and exists
for a longer time when the core overshoot mixing is taken
into account. Because the main effect of overshoot is an extra
mixing and ∇R is proportional to ǫ, the reason of an enlarged
convective core has to be that the mixing adds nuclear fuels,
i.e., 12C and 3He, disturbing the p-p nuclear equilibrium and
hence increases η. Deheuvels et al. (2010) have analyzed the
phenomenon and concluded that the existence of a peak of the
equilibrium abundance of 3He is the reason of the overshoot
mixing extending the lifetime of the convective core because
it brings 3He from the overshoot region into the core.

We have found that a pump cycle mechanism, which has
not been noticed, should be the main reason of the phe-
nomenon. When there is no overshoot mixing, the abundance

MNRAS 000, 1–19 (2020)



Core overshoot of the solar convective core 5

0.01 0.1 1 10

0.00

0.04

0.08

0.12

M
C

Z /
 M

su
n

t / Gyr

   SSM
   OV=0.15
   OV=0.20
   OV=0.25 
   EDOM:

          C=1
          log =2.53

Figure 1. Evolution of fraction of convective-core mass for COM
overshoot with different αov (cf. equation 2) and a EDOM solar
model with logC = 0 and log θ = 2.53.

of 3He in the layer above the core is in local nuclear equilib-
rium, increasing with decreasing temperature and hence in-
creasing distance from the centre. However, if the overshoot
mixing is taken into account, the abundance of 3He in the
mixing region (core and the overshoot region) is in a nonlo-
cal nuclear equilibrium as

0 ≈ ∂X3

∂t
= R3 −

∂F3

∂m
, (6)

where X3 is the abundance of 3He, F3 is the radial flux (mul-
tiplied by 4πρr2) of 3He, and R3 is local generation rate of
the abundance of 3He due to nuclear reactions. The flux F3 is
dominated by the overshoot mixing. The physical boundary
condition of the equation above is that F3 at the boundary
of the overshoot region and at the centre is zero. A key point
is F3 at the convective core boundary. Because the mixing
brings 3He from the overshoot region into the core, F3 at the
surface of the core must be negative. This leads to a pos-
itive ∂F3/∂m > 0 in the overshoot region and a negative
∂F3/∂m < 0 in the core. Therefore the nonlocal dynamical
equilibrium results in a pure 3He generation R3 > 0 in the
overshoot region and a pure 3He consumption R3 < 0 in the
core.

That is a 3He pump cycle mechanism driven by the convec-
tive mixing and the nuclear reactions. The total effect is that
3He is reproduced in the overshoot region, transported into
the core by the mixing, and consumed in the core. Because
the contribution to ǫ of the reaction 3He+ 3He = 4He+2p+
12.86Mev and its temperature sensitivity are high enough to
drive the convection when the abundance of 3He keeps a high
level, the pump cycle mechanism can significantly extend the
life time of the convective core. The main difference between
this mechanism and that of Deheuvels et al. (2010) is that we
emphasize the consecutive reproduction of 3He. If 3He in the
overshoot region is mixed into the core once only, it should
be depleted on its nuclear equilibrium timescale and cannot
maintain the convective core over a much longer lifetime, e.g.,
∼ 1Gyr.

4 CORE PROPERTIES OF SOLAR MODELS

WITH COM

Solar models based on COM with 0 ≤ αov ≤ 0.4 (step 0.001)
have been calculated to investigate the effects of core over-
shoot mixing on the properties of the solar core. Figure 2
shows some properties of the cores of the solar models at
the present solar age, i.e., the fraction of convective core
mass Mcz/M⊙, rms sound-speed deviations 〈δc/c〉 and den-
sity deviations 〈δρ/ρ〉 in the solar core with r < 0.3R, the
8B neutrino flux Φ(8B), the central hydrogen, 3He and 7Be
abundances Xc(H), Xc(

3He) and Xc(
7Be), and the central

temperature log Tc. 〈δc/c〉 and 〈δρ/ρ〉 are calculated based
on Basu et al.’s (2009) helioseismic inferences of sound speed
and density.

Figures 2 (a-c) show that 〈δc/c〉 and 〈δρ/ρ〉 are strongly
correlated with the size of the convective core. The sound-
speed and density profiles of solar models in the core with
r < 0.3R⊙ are in reasonable agreements with the helioseismic
inferences when the core is not convective. However, the devi-
ations of sound-speed and density profiles becomes significant
when a convective core exists. Although the uncertainties of
helioseismic inferences of sound speed and density in the core
(e.g., ∼ 0.1% for sound speed and ∼ 1% for density) are sig-
nificantly higher than that in the bulk of the sun, the devi-
ations of the models with a convective core are significantly
larger than the uncertainties, indicating that the structure of
the core in solar models with a convective core is inconsis-
tent. As shown in Fig. 2d, Φ(8B) is also correlated with the
size of the convective core. When the core is not convective
(αov ≤ 0.25), it increases with the increase of αov. When the
core is convective, it decreases with the increase of αov. Ob-
servations have shown Φ(8B) = 5.16 × 106(±2.2%) cm−2 s−1

(Bergström et al. 2016), while revision of the inferred so-
lar surface abundances, giving rise to the so-called solar
abundance problem (see, e.g., Buldgen et al. 2019b, for a
review) may lead to a model uncertainty which can be es-
timated as ∼ 5%, from the range of Φ(8B) between the
AGSS09Ne and GS98 SSMs compositions (e.g., Zhang et al.
2019); thus a large convective core with Mcz > 0.02M⊙ or
αov > 0.28 is excluded. The 7Be neutrino flux Φ(7Be) of those
solar models changes in a small range between 4.58 × 109

and 4.74 × 109 cm−2 s−1, consistent with observations (e.g.
Bergström et al. 2016).

From these results we conclude that the helioseismic results
argue strongly against the presence of a convective core in the
present Sun when the COM is used, limiting αov to be less
than 0.25. Similarly, Φ(8B) at most allows a tiny convective
core.

In order to understand the dependence of 〈δc/c〉 and 〈δρ/ρ〉
on αov, the details of sound-speed and density deviations of
those solar models are shown in Fig. 3. For r > 0.3R, the
sound-speed and density deviations are basically identical to
the SSM; thus they are not shown. It is found that a larger
convective core (i.e., a high αov) leads to highly significant
deviations of sound speed and density in the convective core.
The sound-speed and density profiles in the core of the solar
models with different values of αov are shown in Fig. 4. It is
found that, for a solar model with a convective core, the sound
speed and its gradient are too high and the density and its
gradient are too low in the convective core. Those features
can be explained by the properties of the convective core
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Figure 2. Properties of the cores of models of the present Sun with classical overshoot (cf. equation 2). The dashed lines in panel d show
the discussed range of Φ(8B), in units of 106 cm−2s−1, based on observation (Bergström et al. 2016) and theoretical uncertainty of ∼5%
(see text).

as follows. The convective mixing leads to a higher central
hydrogen abundance than that of the SSM as shown in Fig. 2h
and Fig. 4, thus a lower density is required to balance the
pressure caused by the gravity of the star since P ∝ ρT/µ,
while it also leads to a higher sound speed since c2 ∝ T/µ.
The gradient of sound speed and density can be written as

d ln c2

dr
≈ d

dr

(

ln
P

ρ

)

≈ d

dr

(

ln
T

µ

)

= − 1

HP
(∇−∇µ) (7)

and

d ln ρ

dr
≈ d lnP

dr
− d ln c2

dr
≈ − 1

HP
(1−∇+∇µ). (8)

Because ∇ < ∇ad and ∇µ > 0 for a radiative core and ∇ ≈
∇ad and ∇µ = 0 for a convective core, ∇−∇µ in a convective
core is larger than that in a radiative core and this leads
to a higher gradient of sound speed and a lower gradient
of density in the convective core. As mentioned above, the
overshoot region is assumed to be radiatively stratified. If
assuming an adiabatic stratified overshoot region, its effects
on the gradients of the sound speed and density should lead
to more significant deviations.

The effect of αov on Φ(8B) can be understood by analyz-
ing the status of the nuclear burning and mixing in the solar

core, described by the central H, 7Be and 3He abundances,
i.e., Xc(H), Xc(

7Be) and Xc(
3He), and the central tempera-

ture log Tc, as shown in Fig. 2. Xc(H) is positively correlated
with αov as shown in Fig. 2h, since the overshoot mixing
brings hydrogen into the core. For αov < 0.25, Xc(

3He) is also
positively correlated with αov as shown in Fig. 2f because the
3He abundance is positively correlated with the H abundance
in nuclear equilibrium. For αov > 0.25, the convective core
survives in the solar model; thus Xc(

3He) significantly in-
creases due to the convective/overshoot mixing. The increase
of Xc(

3He) is more significant than the increase of Xc(H)
near αov = 0.25. This is because the burning timescale of
3He is much shorter than that of H, and therefore Xc(H) has
a memory of historical overshoot but Xc(

3He) does not. For
αov < 0.25, the central temperature is positively correlated
with αov as shown in Fig. 2e. That is because opacity is pos-
itively correlated with Xc(H), so that a higher Xc(H) leads
to a higher central temperature. For αov > 0.25, however,
because of the significant increase of the central 3He abun-
dance, which direct determines the total reaction rate of the
pp chains and dominates the total luminosity, the calibra-
tion of the total luminosity requires a decrease of the central
temperature. For αov < 0.25, Xc(

7Be) is positively correlated
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Figure 3. Sound-speed and density deviations of models of the
present Sun with different COM core overshoot mixing parameter
αov in the sense of 1 − cmodel/c⊙ and 1 − ρmodel/ρ⊙, where c⊙
and ρ⊙ are the helioseimic inferences from Basu et al. (2009).

with Xc(
3He) and the central temperature; thus it increases

with αov. For αov > 0.25, the 7Be abundance is significantly
diluted by the convective/overshoot mixing because the gen-
eration rate of 7Be is strongly positively correlated with the
temperature; thus 7Be is mainly produced in the convective
core. The electron-capture of 7Be is much less sensitive to
temperature than the proton-capture of 7Be. Consequently
Xc(

8B), and hence Φ(8B), are positively correlated with tem-
perature and the 7Be abundance, and therefore it increases
with αov for αov < 0.25 due to the increase of the 7Be abun-
dance and log Tc and quickly decreases for αov > 0.25 because
of the mixing diluting the 7Be abundance.

The convective core survives to the present solar age only
for αov > 0.25; in this case the 8B neutrino flux is not in
agreement with the observations. However, the sound-speed
and density deviations are more sensitive than the neutrino
flux since they start to be significant when αov > 0.20. Thus,
by using the strong constraint provided by the sound-speed
and density deviations, it is indicated in the COM case that
the convective core should vanish before t = 2Gyr which is
the lifetime of the convective core of the model with α = 0.20.
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Figure 4. Sound speed, density and hydrogen abundance profiles
in the core of the solar models with different value of αov . The
black solid lines are smoothly interpolated through the helioseimic
inferences from Basu et al. (2009), the dotted lines are for model
with αov = 0 (the standard solar model), the grey dashed lines and
the grey solid lines are for models with αov = 0.3 and αov = 0.4,
respectively.
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5 CORE PROPERTIES OF SOLAR MODELS

WITH EDOM

5.1 Abundance profiles in the overshoot region

The diffusion coefficient of mixing in the overshoot region in
the COM is much higher than that in the EDOM. In the
EDOM, on the other hand, the quickly decreasing exponen-
tial diffusion coefficient covers a range of many order of mag-
nitude. This leads to a complexity on the abundance profile
of elements involved in nuclear reactions.

In regions where there is no mixing or enhanced diffusion
the evolution of the abundances is controlled by the local nu-
clear reactions, including local nuclear equilibrium since D,
3He, 7Be and 7Li all have nuclear timescales that are much
shorter compared with the evolution timescale of the Sun.
In regions with diffusive mixing the behaviour of an element
depends on the relative magnitude of the nuclear and the
diffusion timescale. In regions where the mixing timescale is
shorter than the nuclear timescale a spatially constant abun-
dance is obtained, as a suitable average over the mixed re-
gion of the nuclear equilibrium abundance. In contrast, for
elements with nuclear timescales substantially shorter than
the mixing timescale, local nuclear equilibrium will apply,
obviously depending on the abundance of other relevant ele-
ments. This leads to different overshoot lengths for elements
with different burning timescales.

Another property of the EDOM is that the effective over-
shoot distance increases with the stellar age. Taking hydrogen
for example, since D decreases in the overshoot region, the
effective overshoot distance defined as lov,dif = r1−rcz can be
estimated based on the mixing timescale at r1 being equal to
the stellar age, i.e., t ∼ τmix ∼ (r1 − rcz)

2/D(r1). Therefore
lov,dif ∝

√
t. In the COM, D truncates at the boundary of

the overshoot region so that there is no such effect.
Although there is no observational data directly relating

to the abundance profiles in the core, the investigation on
the abundance profiles helps to understand the interaction
between the mixing and nuclear reactions in the stellar in-
terior. A detailed analysis of the abundance profiles in the
convective overshoot region is presented in the Appendix.

5.2 Other properties of the core

Solar models with −6 ≤ logC ≤ 0 (step 0.2) and 2.1 ≤
log θ ≤ 2.6 (step 0.01) based on EDOM (equation 1) have
been calculated to investigate the effects of the diffusion
model of the core overshoot mixing on the properties of the
present solar core. In order to compare them with models
with COM, we consider only models with a present convec-
tive core and set the convective core mass fraction as the
independent variable. Figure 5 shows some main properties
of the cores of the models at the present solar age, i.e., 〈δc/c〉
and 〈δρ/ρ〉 in the solar core with r < 0.3R, Φ(8B), Xc(H),
Xc(

3He) and Xc(
7Be), and log Tc. The solid line shows the

solar model with COM and the grey dots show results for the
solar models with EDOM. It is found that the dependence of
each variable on the convective core mass fraction in the solar
models with EDOM is similar to that of the solar models with
COM. We note that, as a result of the range of values con-
sidered in C and θ for the EDOM models their results cover
a band of values; however the width of this is constrained by

carrying out the analysis at fixed mass of the convective core.
The qualitative analysis in Section 4 is also applicable for the
models with EDOM. However, the core properties show sys-
temic differences between EDOM and COM.

In order to understand the reason of the differences of
the observable variables 〈δc/c〉, 〈δρ/ρ〉 and Φ(8B) between
EDOM and COM as shown in Fig. 5(a-c), we have first to
investigate Xc(H), Xc(

3He) and Xc(
7Be), and log Tc. Those

are shown in Fig. 5(d-g). For a given mass fraction of the con-
vective core, the central hydrogen abundances of solar mod-
els with EDOM are less than those of COM. This is because
dlov,dif/dt > 0 for EDOM and dlov/dt < 0 for COM. The lat-
ter has stronger overshoot than the former before the present
solar age, thus Xc(H) of the models with COM are higher.
The same reason holds for Xc(

3He). As discussed above, the
efficiency of 3He and 7Be mixing in EDOM is weaker than
in COM. Therefore the solar model with EDOM has lower
Xc(

3He). Concerning 7Be the abundance in the core, as dis-
cussed above, reflects an averaged nuclear equilibrium over
the fully mixed region; since this extends further for COM
than for EDOM, the average nuclear equilibrium abundance
includes lower temperatures, resulting in a lower 7Be abun-
dance for COM than for EDOM in the core. For a given
mass fraction of the convective core, the solar model with
EDOM has higher central temperature because the hydro-
gen and 3He abundances are lower so that the calibration of
luminosity requires a higher central temperature.

Φ(8B) of the models with EDOM is higher than those with
COM as shown in Fig. 5c. The reason is that the models
with EDOM have higher Xc(

7Be) and central temperature.
The former is because the overshoot of 7Be in EDOM is much
weaker than that in COM due to its short burning timescale
(see the Appendix). The models with EDOM show smaller
deviations of the sound speed and density in the core rel-
ative to the Sun as illustrated in Fig. 5a and b. This re-
sults from their lower central hydrogen abundance. The solar
model with COM show higher sound speed and lower density
than those of the helioseismic inferences as shown in Fig. 4.
The lower central hydrogen abundance in the models with
EDOM leads to a higher µ so that a higher density is re-
quired to balance the pressure and a lower sound speed is
obtained because c2 ∝ µ−1. Those reduce the deviation of
sound speed and density for the solar models with EDOM,
compared with the models computed using COM.

Another difference between the results of the COM and
EDOM calculations is shown in Fig. 5, namely that the sound-
speed and density deviations at Mc = 0 can be significant and
this occurs only in the COM case. As discussed above, this
leads to the stronger constraint that the lifetime of the con-
vective core should be less than 2Gyr in the COM case. The
results of the EDOM show no degeneracy at Mc = 0, indi-
cating that there is no such stronger constraint. The possible
reason of the difference is as follows. The historical strength
of the overshoot mixing in the COM case is stronger than
that in the EDOM case since dlov,dif/dt > 0 for EDOM and
dlov/dt < 0. Therefore it requires a much longer time to
establish a high enough composition gradient to reduce the
sound-speed and density deviations in the COM case.
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Figure 5. Properties, as a function of the mass of the convective core, of the cores of models of the present Sun with overshoot mixing. Solid
lines are for models with COM and grey dots are for models with EDOM. The dashed lines in panel d shown the range of determinations
of Φ(8B), in units of 106 cm−2s−1.
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Figure 6. Deviations of r01, r10 and r02 ratios of the SSM and a typical EDOM solar model with C = 1 and θ = 2.53 from observations.
For the SSM and the EDOM solar models logχ2

r are about 3.4 and 3.6, respectively.

5.3 The ratios of small to large frequency

separations

Roxburgh & Vorontsov (2003) demonstrated that the ratios
of small to large separations are sensitive to the properties of
the core for solar-like stars. Therefore the ratios could con-
strain the core overshoot parameters. We have calculated the
frequencies of the EDOM solar models in the range of l = 0−2

and 600 < ν/(µHz) < 5000 and then the ratios r01, r10 and
r02. Observations of solar oscillation frequencies for l = 0− 2
are taken from Broomhall et al. (2009). Deviations of the ra-
tios of the SSM and a typical EDOM solar model with C = 1
and θ = 2.53 are shown in Fig. 6. The fit of the ratios to the
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logχ2
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r.

observations is characterized by χ2, calculated as

χij
2 =

N
∑

i=1

(
rij − rij,obs

δrij
)
2

. (9)

The uncertainty δrij of the observed rij is calculated by
assuming all the individual frequencies being independent.
Roxburgh (2018) demonstrated that r01 and r10 are corre-
lated and suggested that only one of those ratios should be
combined with r02 in comparing the ratios with observations.
Here we define the total χ2

r as:

χ2

r = χ2

010 + χ2

20, (10)

where

χ2

010 =
χ2
01 + χ2

10

2
(11)

to avoid overfitting; meanwhile r01 and r10 are balanced in
the total χ2

r. Results for the EDOM solar models are shown
in Fig. 7. The minimum in the calculated parameter space is
log χ2

r ≈ 3.5. However, the AGSS09Ne SSM gives a smaller
χ2
r, log χ

2
r ≈ 3.4. Because χ2

r decreases with increasing θ and
decreasing C as shown in Fig. 7, while the SSM is equivalent
to the case of θ = ∞ and C = 0, χ2

r of the SSM can be
regarded as the minimum of χ2

r, i.e., χ2

r,min = 3.4. As a suit-
able constraint on the range of the parameters based on the
frequency separation ratios we suggest χ2

r(C, θ) ≤ 2χ2

r,min.
Therefore the parameters are constrained in the range with
log χ2

r ≤ 3.7, shown as the dashed line in Fig. 7, favouring a
radiative core.

Bellinger et al. (2016) developed a machine learning code
to obtain stellar parameters for given observational data.
They investigated the Sun by application of machine learn-
ing to the oscillation frequencies, including the ratios of small
to large frequency separations, obtaining a small value of
αov = 0.060 ± 0.015. In this case, the Sun should have no
convective core, based on Fig. 2a. This is consistent with our
analysis of the ratios which also favours a radiative core.

6 PARAMETER CONSTRAINED FOR EDOM

OF THE CORE OVERSHOOT

The dependence of properties of the solar core (Mcz/M⊙,
〈δc/c〉 and 〈δρ/ρ〉 in the solar core with r < 0.3R, and Φ(8B))
of the solar models on the parameters of EDOM are shown in
Fig. 8. It is found that the sound-speed and density deviations
in the solar core quickly increase when the mass fraction of
the convective core becomes larger. Therefore the helioseismic
inferences of sound speed favour a radiative core. Taking into
account 2.2% observational and 5% theoretical uncertainties,
it is found that the reasonable range of Φ(8B) of the solar
model is from 4.88×106 to 5.44×106 cm−2 s−1. The resulting
8B neutrino fluxes shown in the figure also favour a radiative
core or a tiny convective core with the mass fraction less than
1% (noting that the region of Φ(8B) < 5.44 × 106 cm−2 s−1

in the large Mcz/M corner is strongly excluded by the helio-
seismic inferences).

Based on these results, it is reasonable to conclude that the
present Sun should have no convective core. To characterize
this, we introduce a critical θ denoted θcr, such that θ <
θcr will leads to a convective core in the solar model at the
present solar age. From our analysis we find that

log θcr = 2.53 + 0.007logC − 0.008log2C ± 0.02, (12)

which is derived from a quadratic polynomial fitting of the
data in Fig. 8. This formula is consistent with the constraint
given by the ratios of small to large separations since log χ2

r ≤
3.7 is satisfied if θ > θcr.

For solar models, especially for the structure of the so-
lar core, there are some crucial input physics, e.g., the solar
composition, opacity and nuclear reaction rates, whose cur-
rent uncertainties could significantly affect the solar structure
(Serenelli 2016; Vinyoles et al. 2017; Buldgen et al. 2019c;
Christensen-Dalsgaard 2021). The uncertainties of composi-
tion and opacity lead to global variation of the solar model,
as reflected in larger deviations from the helioseismic infer-
ences, known as the solar abundance problem (Serenelli et al.
2009). The uncertainties of the nuclear reaction rates could
impact the structure of the core. We have tested different
input physics to investigate their effects. The critical θ − C
relations in those cases are shown in Fig. 9. In the standard
case denoted as A09Ne, the solar composition is the A09Ne
composition, the opacity is based on the OPAL tables, and
the nuclear reaction rates are from SFII. The difference be-
tween the NACRE case and the standard case is that the SFII
rates have been replaced by the NACRE rates (Angulo et al.
1999). The difference between the OP or OPAS case and the
standard case is that the OPAL tables have been replaced
by the OP (Seaton 2005) or OPAS (Blancard et al. 2012;
Mondet et al. 2015) tables to obtain the opacities in solar
interior. The difference between the GS98 case and the stan-
dard case is that the A09Ne composition has been replaced
by the GS98 composition (Grevesse & Sauval 1998). We have
also tested the effect of the extra mixing below the base of the
convection envelope, which is based on the model of the con-
vective overshoot mixing and turbulent kinetic energy flux
(Zhang et al. 2019), denoted as the OVM case. It is found
that the critical θ − C relation changes little (∆θcr < 0.06)
when those crucial input physics change.
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Figure 8. Properties of cores of solar models with diffusion model
of overshoot mixing. Grey contours show the mass fraction of the
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Figure 9. Critical value of θ with different C. A convective core
exists in the solar model when θ < θcr. Four cases of different in-
put physics are compared. The black solid line denoted as ’A09Ne’
is the standard case. The black dashed line denoted ’NACRE’ is
the case where the SFII nuclear reaction rates are replaced by
the NACRE rates. For the grey solid line denoted ’OP’ and the
grey dashed-dotted line denoted ’OPAS’ the OPAL opacity ta-
bles are replaced by, respectively, the OP (Seaton 2005) and the
OPAS (Blancard et al. 2012; Mondet et al. 2015) tables, while for
the grey dashed line denoted ’GS98’ the AGSS09 solar composi-
tion is replaced by the GS98 composition. Finally, for the black
dashed-dotted line denoted ’OVM’ convective envelope overshoot
(Zhang et al. 2019) is taken into account.

7 LINK TO THE “SOLAR SPOON”

Dilke & Gough (1972) proposed a “solar spoon” mechanism
that the ǫ-mechanism of H and 3He burning on g−modes
could excite an instability leading to a mixing in the so-
lar core. The mixing reduces the composition gradient and
then restrains the instability. The next time of the insta-
bility occurs when a sufficient composition gradient is built
up. Dilke & Gough (1972) suggested that the mixing occurs
in the solar core with enclosed mass 0.25M⊙ every 250 Myrs
(see also Christensen-Dalsgaard et al. 1974), the mixing lead-
ing to a slight reduction of the solar luminosity (∼ 5%) and a
significant reduction of the solar neutrino fluxes. The former
relates to the Earth’s ice ages and the latter relates to the low
observed solar neutrino fluxes at a time where the neutrino
oscillations had not been confirmed yet.

This mixing leads to a variation of the properties of the so-
lar core that could be tested. We have calculated solar mod-
els based on the input physics of the AGSS09Ne standard
solar model with an additional instantaneous mixing in the
solar core with M < 0.25M⊙ at the age t = t0 + 250nMyrs
where n = 1, 2, 3, ... is integer. Two cases are calculated, i.e.,
t0 = 67Myr and t0 = 0. In the former case, the last “so-
lar spoon” mixing occurs 3 Myr before the current solar age
which is consistent with the start of the quaternary glacia-
tion on Earth. In the latter case, the last “solar spoon” mixing
occurs 70Myr before the current solar age. The solar model
with t0 = 67Myr is directly impacted by the mixing and the
solar model with t0 = 0 is in equilibrium. Therefore the two
models include the two possible cases that the stellar model
is in equilibrium and not in equilibrium. The sound-speed
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Figure 10. The sound-speed and density deviations of the two
solar models with the “solar spoon” mixing. The black lines corre-
spond to the case of t0 = 67Myr and the grey lines to the case of
t0 = 0Myr.

and density deviations of the two solar models are shown in
Fig. 10. The deviations are quite large because of the low com-
position gradient in the core due to the “solar spoon” mixing.
The 7Be and 8B neutrino fluxes of the two solar models are
about 3.4 × 109 and 3.0 × 106 cm−2 s−1, respectively. Both
are significantly lower than the observations. Another conse-
quence is to result in a longer main-sequence stage lifetime
as 14.4 Gyr, higher than the age of the universe, raising an
issue of the origin of the solar-mass red giants. Because of
the above problems, we regard the possibility of the “solar
spoon” mechanism with a fast mixing in the core with 0.25
solar mass occurring at 250 Myr intervals to be unlikely.

8 PARAMETER CONSTRAINTS BASED ON

OTHER SOLAR-MASS STARS

Deheuvels et al. (2016) (in the following D16) have investi-
gated some solar-mass Kepler target stars and constrained
the properties of their cores, i.e., convective or not and
the mass fraction of te convective core if it exists. The in-
vestigation is based on the analysis of the r010 ratios of

the small to large frequency separations of l = 0 and
l = 1 modes (Roxburgh & Vorontsov 2003), which have
been shown to be sensitive to the structure of the stellar
core (e.g., Roxburgh & Vorontsov 2003; Provost et al. 2005;
Deheuvels et al. 2010). We use those stars as samples to con-
strain the overshoot parameters. The following information
is taken from D16: the large separations ∆ν is taken from
Table 1 in D16, the effective temperature Teff is the mean
value of Bruntt et al. (2012) and Pinsonneault et al. (2012),
the stellar masses for stars without convective core are taken
from Table 1 in D16, the ratio of the metallicity to hydro-
gen abundance at the stellar surface (Z/X)D16 is taken from
Tables 1 and 2 in D16. Z/X listed in the last column shows
the range of the metallicity to hydrogen abundance at the
stellar surface of the satisfactory stellar models calculated in
this paper.

For each star, we have calculated stellar models with dif-
ferent values of C (logC from −6 to 0 with a step of 0.5)
and θ (log θ from about 1.5 to 3, a little different for each
star, with a step of 0.1) to constrain their range based on the
ratios of small to large frequency separations r01, r10 and r02
(see Section 5.3), while the mixing-length parameter α = 1.8
is the same as in the solar case, and the initial helium abun-
dance is set to Y = 0.26. The reference solar composition
is based on the GN93 composition (Grevesse & Noels 1993),
following the MESA stellar models in D16. 1 The suggested
stellar mass in Table 1 is adopted. The metallicity is iter-
atively adjusted to calibrate the effective temperature Teff

of the stellar model whose large frequency separation ∆ν is
consistent with the observations (values of Teff and ∆ν for
each star are listed in Table 1). Oscillation frequencies with
l = 0 − 2 in a range covering the observed frequencies are
calculated for the calibrated stellar models whose Teff and
∆ν are consistent with the values in Table 1. The ratios r01,
r10 and r02 and then χ2

r are calculated. We adopt the param-
eter space in which χ2

r(C, θ) ≤ 2χ2

r,min as the recommended
range of the overshoot parameters. For each star, three cases
of stellar mass are calculated, i.e., the centre value, the lower
limit and the upper limit. For example, for KIC 8394589,
we calculated three cases with M = 1.18M⊙, M = 1.10M⊙

and M = 1.26M⊙. The suggested parameter space defined
by χ2

r(C, θ) ≤ 2χ2

r,min in each case of the stellar mass are
combined as the final recommended parameter space of the
overshoot mixing for each star.

Molecular diffusion was not considered for the models in
Table 1 of D16 or in our calculations. It is well known that
the molecular diffusion results in strong depletion of helium
and heavier elements in the outer layers, and eventually to a
pure hydrogen envelope, in stars of mass higher than about
1.2M⊙ (depending on metallicity). Because the opacity is
sensitive to heavy elements, complete depletion of helium and
heavy elements impacts the stellar radius and then ∆ν. Ex-
cessive settling of helium and heavy elements is in contrast
to the observation of the surface element abundances (e.g.,
Varenne & Monier 1999) and the measurement of helium by
using its glitch signature in the observed oscillation frequen-
cies (Verma et al. 2017; Verma & Silva Aguirre 2019) of A-

1 Deheuvels et al. (2016) have compared the results of GN93 com-
position with those of AGSS09 composition and found little differ-
ence.
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Table 1. Information of some solar-mass stars investigated by Deheuvels et al. (2016). (Z/X)D16 is the value obtained in that paper,
while Z/X is the value required in our calculation to calibrate Teff .

KIC ID ∆ν(µHz) Teff (K) M/M⊙ (Z/X)D16 Z/X

5184732 95.64 5840(60) 1.20(1) 0.057(1) 0.046(1)
6106415 104.20 5990(60) 1.15(6) 0.020(3) 0.032(1)
6116048 100.72 6000(90) 1.07(5) 0.014(2) 0.022(1)
6225718 106.00 6230(60) 1.26(3) 0.019(1) 0.034(1)
6933899 72.26 5850(60) 1.14(4) 0.026(3) 0.030(1)
7206837 79.10 6350(80) 1.44(4) 0.035(2) 0.043(1)
7510397 62.43 6160(80) 1.36(4) 0.017(1) 0.025(2)
8228742 62.29 6090(70) 1.33(5) 0.018(1) 0.023(2)
8394589 109.44 6180(90) 1.18(8) 0.011(1) 0.026(1)
10454113 105.55 6160(70) 1.27(2) 0.023(2) 0.039(1)
10516096 84.43 6030(110) 1.11(4) 0.021(3) 0.019(1)
12009504 88.38 6170(120) 1.20(1) 0.021(2) 0.024(1)
12258514 74.96 5990(60) 1.24(2) 0.028(2) 0.027(2)

and F- type stars. Physical processes missing in our calcula-
tions, such as radiative levitation (e.g., Turcotte et al. 1998;
Dotter et al. 2017; Deal et al. 2018, 2020), or extra dynami-
cal mixing (Verma et al. 2017; Verma & Silva Aguirre 2019;
Deal et al. 2020) are required to compensate for the quick
downward settling of helium and heavy elements in the stellar
envelope. Deal et al. (2020) showed that the combination of
molecular diffusion, radiative levitation and rotational mix-
ing can produce reasonable results of surface abundance and
stellar parameters.

For each star, the ratio Z/X of the stellar models satis-
fying the condition of the convective core suggested by D16
for models with different logC and log θ are listed in the
last column in Table 1. The resulting Z/X are generally
largely consistent with the suggested value by D16 except
for some stars showing significant deviations: KIC8394589,
KIC6225718, and KIC10454113. The possible reason for the
deviation of metallicity is the difference in the calculations
between D16 and this paper. D16 assessed the best-fitting
models by using the minimum of χ2, with the differences of
Teff between models and observations contributing to the to-
tal χ2. In this paper, we have calibrated Teff for the stellar
model with given ∆ν. This calibration of Teff corresponds to
applying a very small uncertainty (much less than the uncer-
tainty suggested by the observations) in Teff in assessing the
best-fitting model by using the minimum of χ2. This adds
extra weight to Teff and could reduce and change the range
of metallicity.

The lower limits of θ for the stars with mass less
than 1.20M⊙, i.e., KIC8394589, KIC6106415, KIC6116048,
KIC10516096 and KIC6933899 are shown in Fig. 11a. The
parameter constraints provided by the stars with mass 1.20≤
M/M⊙ <1.30, i.e., KIC6225718, KIC5184732, KIC10454113,
KIC12009504 and KIC12258514 are shown in Fig. 11b.
KIC6225718, KIC10454113, KIC12009504 only provide lower
limits of θ. KIC5184732/KIC12258514 constrain θ in a range
between the two dashed/solid lines. For the three stars with
mass higher than 1.30M⊙, i.e., KIC7206837, KIC7510397
and KIC8228742, corresponding parameter ranges are shown
in Fig. 11c. No constraint for the parameter C has been found
in those stars.

A special case is C = 1, when the overshoot model equa-

tion (1) reduces to the widely used Herwig’s (2000) model,
equation (3), with θ = 2/fov . The parameter constraints pro-
vided by all the 13 KIC stars and also the Sun in the case of
C = 1 are shown in Fig. 12a. The strongest constraints are
from the Sun, KIC10454113 and KIC12258514. The dashed
lines present the recommended parameter range based on the
linear fitting with ensuring all lower limits being satisfied:

log θ = 3.46 − 0.80
M

M⊙

± 0.08. (13)

The results and the recommended parameter range of fov for
Herwig’s (2000) model are shown in Fig. 12b. It should be
pointed out here that there is a little difference between the
fov in Herwig’s (2000) model and the value of 2/θ since the
constant HP in that model has been replaced by local HP

as mentioned above. The local HP decreases with r near the
boundary of the convective core. Using 2/θ could underesti-
mate fov. However, the difference should be tiny because the
diffusion coefficient decreases with r much faster than HP

does and and this quantity varies little in the efficient mixing
region. It is shown that fov increases with stellar mass, qual-
itatively similar to the results of the calibration of eclipsing
binaries (e.g., Claret & Torres 2017, 2018, 2019). Our results
show a slightly higher value of fov than they did. Their re-
sults indicated no overshoot for M < 1.2M⊙. Our results
of KIC 5184732 and KIC 1258514 indicate the existence of
overshoot mixing for 1.2M⊙ stars. It should emphasized here
that the above investigation is not a full asteroseismic investi-
gation because the stellar mass, the large separation and the
effective temperature are fixed for the stellar models whose
small to large separation ratios have been assessed. We shall
carry out a full asteroseismic investigation with free stellar
parameters in the near future.

For the calculations of the stellar evolution of the stars
with mass from about 1.2− 2.5M⊙, it is well known that the
size of the convective core is sensitive to the details of the
numerical calculations since the semi-convection leads to an
instability of the location of the boundary of the convective
core (see, e.g., Silva Aguirre et al. 2020). In the YNEV code,
we always set dense mesh points (by a factor of ∼10) near
all convective boundaries to alleviate the uncertainty of the
size of convection zones caused by meshing. On the other
hand, it has been found that an strong enough overshoot
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Figure 11. Parameter constraints based on the FWHM of χ2
r

with fitting by quadratic functions. The fitting errors are typically
less than 0.05. The grey lines show the lower limits of θ provided
by the star with the KIC ID denoted to the left of the line. The
black lines (solid, dashed and dotted) are shown in pairs, present
the recommended parameter range provided by the star with the
KIC ID denoted in the key.
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Figure 12. Relation between θ (top) and fov (bottom) and stel-
lar mass in the case of C = 1. The arrows mean the lower limit
for θ and the upper limit for fov . The dashed lines present the
recommend parameter ranges.

mixing could remove the semi-convection (see, e.g., Xiong
1986; Meng & Zhang 2014). We have tested the weakest case
of the EDOM in our parameter space, i.e., logC = −6 and
log θ = 2.8. The mass fractions of the convective core for
stellar mass between 1.2 − 2.5M⊙ as functions of stellar age
are shown in Fig. 13. It is found that the mass fractions of the
convective core are smooth and the instability of the location
of the boundary of the convective core is removed. The semi-
convection problem for the low mass stars is eliminated by
taking into account core overshooting mixing. Therefore our
results are not affected by semi-convection.

9 DISCUSSION AND CONCLUSIONS

The convective overshoot mixing is a significant uncertainty
in stellar physics. Classical overshoot modelling (COM) is im-
plemented by assuming full mixing in a region whose extent
is parametrized by αov, in units of the pressure scale height
HP or the extent of the convective core. However, numeri-
cal simulations and stellar turbulent convection models have
shown that the overshoot mixing should be described as a
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Figure 13. Evolution of the mass fraction of the convective core
for stellar mass from 1.2 − 2.5M⊙. The black lines are for the
stellar models with the EDOM with logC = −6 and log θ = 2.8.
The numbers denote the stellar mass. The grey line is the case
of a 1.5M⊙ star without overshoot mixing, showing significant
instability of the size of the convective core due to the semi-
convection. The abundances for all models are X = 0.7 and
Z = 0.02 with the GN93 solar composition of heavy elements, as
for Silva Aguirre et al. (2020). The stellar age includes the PMS
stage. Only the main sequence stage (defined by X0 − Xc > 0.01
in the YNEV code) is shown.

diffusion process with an exponentially decreasing diffusion
coefficient.

In this paper, we consider both the classical and the
exponential-diffusion models. The diffusion overshoot mixing
is modelled with a diffusion coefficient with a general expo-
nential behaviour, i.e., equation (1), including two parameters
θ and C. The exponent θ represents the e-folding length of the
diffusion coefficient and the parameter C represents the pos-
sible decrease of the diffusion coefficient near the convective
boundary due to variation of the characteristic length. The
formula recovers to the widely used Herwig’s (2000) model
when the parameters are set as C = 1 and θ = 2/fov. In
order to investigate the effects of the exponential diffusion
overshoot model and the range of the parameters for low-
mass stars, we have investigated the properties of the core in
solar models with convective core overshoot mixing.

For ZAMS solar-mass stars, there is a convective core be-
cause of the high temperature sensitivity of the 12C proton
capture reaction and 3He fusion. The convective core vanishes
in a short time (∼ 0.1 Gyr) when the primordial 12C and 3He
are depleted. It is found that the convective core overshoot
mixing prolongs the lifetime of the convection in the core be-
cause of a cyclic mechanism of 3He driven by overshoot mix-
ing and nuclear reactions, i.e., overshoot mixing transports
3He from the overshoot region into the core, 3He is consumed
in the core, and 3He is reproduced in the overshoot region.
The temperature sensitivity of the energy release from out-
of-equilibrium 3He burning is sufficient to drive convection
in the core if the overshoot mixing is sufficiently efficient to
keep a high 3He abundance in the core.

If the core overshoot mixing maintains a convective core in
the solar models until the present solar age, the sound-speed

and density profiles in the solar core are not consistent with
the helioseismic inferences because the mixing enlarges the
hydrogen abundance leading to a lower density and a higher
sound speed and also the gradients of sound speed and density
are determined by the temperature gradient and µ gradient
which are affected by the existence of convection as shown by
equations (7)-(8). The presence of a convective core will lead
to a strong signal in the gradients of sound speed and density
in the core, resulting in significant deviations in sound speed
and density as shown in Fig. 3. The solar 8B neutrino flux
also favours a radiative core because a convective core leads
to high core temperature, thus resulting in a too high 8B
neutrino flux. Those results provide a constraint on the pa-
rameters of the general diffusion model of the core overshoot
mixing for solar-mass stars, e.g., equation (12). Analysis of
the small to large frequency separation ratios leads to a sim-
ilar upper limit on the strength of the overshoot mixing. If
the classic overshoot model is adopted, the length of the over-
shoot region should be less than 0.25 min(HP , rcz). We have
investigated the consequences of some uncertainties in the in-
put physics for solar models, e.g., replacing the composition,
opacity tables, or nuclear reaction rates, and have found that
their effects are small on our conclusions.

We analyzed the overshoot mixing process of elements in-
volved in the pp chains. The exponential diffusion overshoot
model leads to different effective overshoot mixing lengths for
elements with different nuclear equilibrium timescale. The ef-
fective duration of mixing of an elements is constrained by
its nuclear equilibrium timescale. An element with a shorter
nuclear equilibrium timescale requires a higher diffusion co-
efficient to show a given strength of mixing. Therefore the
exponential diffusion overshoot model predicts a shorter ef-
fective overshoot mixing length for that element. This is a sig-
nificant difference from the classical overshoot model which
predicts an uniform overshoot length for all elements.

The exponential overshoot model, equation (1), was ap-
plied to some Kepler solar-mass stars investigated by
Deheuvels et al. (2016) who constrained the core status (con-
vective or not, mass fraction of the convective core if con-
vective) of those stars. Based on the frequencies and stellar
parameters of those stars, the overshoot parameter θ can be
further constrained by using a least squares deviation of the
r010 and r02 ratios. A recommended parameter range of θ is
obtained for stars with 1 < M/M⊙ < 1.5. A tendency of
decreasing θ with increasing stellar mass is revealed. On the
other hand, the overshoot parameter C cannot be constrained
in this investigation; θ is the most influential parameter for
the strength of the overshoot mixing because it determines
the e-folding length of the overshoot region. Therefore the
effect of the variation of C is relatively weaker than that of θ.
It requires more samples and a more accurate investigation
to probe the value of C.

The resulting tendency of decreasing θ with increas-
ing stellar mass for low-mass stars is not surpris-
ing. It is equivalent to the well-known result that
fov or αov should increase with the increasing stellar
mass (e.g., Woo & Demarque 2001; Demarque et al. 2004;
Pietrinferni et al. 2004; VandenBerg et al. 2006; Claret 2007;
Claret & Torres 2016, 2017, 2018, 2019; Bressan et al. 2012;
Deheuvels et al. 2016; Hidalgo et al. 2018). On the other
hand, as the stellar mass decreases the size rcz of the convec-
tive core becomes smaller and HP at the convective boundary
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becomes larger; thus if the characteristic length of the over-
shoot mixing is measured in HP a constant fov or αov leads
to a rather strong overshoot mixing for the low-mass stars.
In this case, rather than HP , the radius of the convective
core rcz could be a better unit to measure the characteris-
tic length in overshoot region. This is because the size of
the core constrains the characteristic length in the convec-
tive core which is correlated with that in the overshoot re-
gion. For intermediate mass stars with 2.5 < M/M⊙ < 5, the
characteristic length in the convective core is smaller than
the size of the core so that it is insensitive to the size of
the core and then a constant fov or αov is expected (see,
e.g., Claret & Torres 2017, 2018, 2019). However, for massive
stars with M/M⊙ > 8, the width of the main sequence indi-
cates a mass-dependent overshoot again (Castro et al. 2014;
Scott et al. 2021). The possible reason is that the strength
of the convective boundary mixing caused by the turbulent
entrainment depends on conditions and varies with stellar
mass (Scott et al. 2021). In this paper, extra mixing includ-
ing the turbulent entrainment and rotational mixing are not
taken into account. If they are present, the constraints of
the strength of the overshoot mixing should be regarded as
the constraints of total strength of all kinds of mixing in the
mixing layer above the convective core.

For both overshoot models in this paper, we assumed that
the temperature gradient is purely radiative in the overshoot
region. However, it should be noticed that the convective
entropy flux and kinetic energy flux change the tempera-
ture gradient in the overshoot region. The convective en-
tropy flux should increase the temperature gradient a lit-
tle and make it closer to the adiabatic temperature gradi-
ent (e.g., Xiong & Deng 2002; Zhang & Li 2012; Zhang et al.
2012; Baraffe et al. 2022). The kinetic energy flux should de-
crease the temperature gradient and reduce the size of the
convective core (Zhang 2014). However, the kinetic energy
flux in the core overshoot region should be low due to the
low turbulent velocity in the core caused by the high density.
Therefore taking into those fluxes should not significantly
change the results.
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APPENDIX A: ABUNDANCE PROFILES NEAR

THE CONVECTIVE CORE BOUNDARY

Here we present a detailed analysis of the abundance profiles
in the stellar core affected by overshoot mixing. The diffusion
coefficient of convective/overshoot mixing and the abundance
of the elements participating the pp chains, i.e., H, D, 3He,
7Be, 7Li, of a solar model with EDOM with C = 0.1 and
logθ = 2.19, a solar model with COM with αov = 0.293, and
the SSM are shown in Fig. A1. The two models with over-
shoot have the same value of the mass fraction of the convec-
tive core Mcz/M⊙ = 0.0322 and their convective boundary
are at rcz ≈ 0.074.

The diffusion coefficient of the convective/overshoot mix-
ing is shown in Fig. A1a. For the COM (the black line), the
diffusion coefficient D in the overshoot region is the same as
the typical value of D in the convective core. For the EDOM
(the grey line), D drops an order of magnitude at the con-
vective boundary because its value of the parameter C is 0.1,
then it decreases exponentially in the overshoot region.

D, 3He, 7Be and 7Li all have nuclear timescales much
shorter than the evolution timescale of the Sun, so that
they are in local nuclear equilibrium where there is no mix-
ing or overshoot diffusion. This is reflected in Fig. A1 in
the behaviour for the SSM. The equilibrium abundances de-
pend mainly on temperature (but also on X(H)), such that

MNRAS 000, 1–19 (2020)
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Figure A1. The diffusion coefficient and the abundance of the elements participating the pp chains. Black dotted lines are for the case
of the SSM with αov = 0, black solid lines are for the solar model with COM with αov = 0.293, and the grey lines are for the solar model
with EDOM with C = 0.1 and logθ = 2.19. The two solar models with overshoot have the same value of the mass fraction of the convective
core Mcz/M⊙ = 0.0322 and their convective boundaries are at rcz ≈ 0.074. The grey dashed line in each panel shows the location of the
convective boundary of the solar model with EDOM, i.e., rcz = 0.0738R. In panels b and d, the grey dotted lines and the arrows denote
the effective overshoot length for H and 3He.

X(3He) increases with decreasing temperature and X(7Be)
and X(7Li) decrease with decreasing temperature.

In the COM case, mixing is efficient throughout the con-
vective core and the overshoot region, as reflected in Fig. A1,
with a diffusive timescale r2cz/D ∼ 2.5× 106 s. This is shorter
than the nuclear timescales of 3He (τn ∼ 1013 s) and 7Be
(τn ∼ 107 s); consequently the abundances of these elements
as well as, obviously, hydrogen, are uniform in the mixed re-
gion. However, for D (τn ∼ 1 s) and 7Li (τn ∼ 103 s) local nu-
clear equilibrium applies, with X(D) increasing slowly, with
decreasing temperature and distance to the centre, closely re-
lated to X(H). The behaviour of X(7Li) is a little more com-
plex. 7Li is produced from 7Be by electron capture, which de-
pends little on conditions, and is destroyed by proton capture.
Thus X(7Li) is closely linked to X(7Be). In the fully mixed
region X(7Be) is constant, and the variation in X(7Li) re-
flects the variation in the proton capture rate which decreases
rapidly with decreasing temperature, leading to an increase
in X(7Li). However, outside the mixed region X(7Be) is in
local nuclear equilibrium, decreasing rapidly with decreasing
temperature, and resulting in the overall decrease in X(7Li).

To analyze the more complex properties of EDOM we in-
troduce an effective overshoot length (denoted lov,dif), such
that the mixing is efficient over that length, making the abun-
dance of a specific element nearly completely mixed. Setting
the location of the outer point of the efficient mixed region
to be r1, we have lov,dif = r1 − rcz. Because the mixing ef-
ficiency is high enough in the convective core, r < rcz, for
the great majority of elements, the condition of forming an
efficient mixed region for r < r1 is that the overshoot region
rcz < r < r1 is efficiently mixed. That requires D1 ∼ l2ov,dif/τ

where D1 is the typical diffusion coefficient in the overshoot
region and τ is an effective duration of mixing. Because the
diffusion coefficient decreases exponentially in the overshoot
region, mixing efficiency is dominated by the minimum of
the diffusion coefficient. For τ , it is generally the duration of
the mixing τmix, which is approximately the stellar age t for
the convective core overshoot of main-sequence stars. How-
ever, according to the abundance evolutionary equations, if
an element participates in nuclear reactions, its abundance
variation also depends on its nuclear depletion timescale τn.
A reasonable viewpoint is that the abundance is dominated
by the nuclear equilibrium when τn < τmix and the convec-
tive/overshoot mixing when τn > τmix. Therefore the effec-
tive duration of mixing cannot exceed the nuclear depletion
timescale. Based on the discussion above, an equation for the
effective overshoot length lov,dif for EDOM can be estimated
from

D(r1) ∼
l2ov,dif
τ

, (A1)

where

lov,dif = r1 − rcz , τ = min(τmix, τn). (A2)

Defining two new dimensionless variables x and q as

x =
θlov,dif
HP

, (A3)

q =
HP

2

θ2CD0τ
,

equation (A1) can be rewritten as

exp(−x) = qx2, (A4)
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while

D(r1) = CD0 exp(−x). (A5)

In the EDOM model shown as the grey lines in Fig. A1,
HP ≈ 1010 cm, θ ≈ 155 and CD0 ≈ 1012 cm2 s−1, thus
q ≈ 4000/τ where the effective duration of mixing τ is differ-
ent for each element. Calculating q by using equation (A3),
the effective overshoot length can be worked out by solv-
ing equation (A4). Those equations indicate that the effec-
tive overshoot length is different for each element/isotope,
which is an intrinsic difference between the classical over-
shoot model and the exponential diffusion overshoot model.

For a main-sequence star τn for hydrogen is the main-
sequence life time that is obviously larger than its age t;
thus τ = τmix = t ∼ 1017 s, q ≈ 4 × 10−14, x ≈ 24.5 and
D(r1) ∼ 20 cm2 s−1. The corresponding r1 is about 0.093R
based on Fig. A1a. This is consistent with the results shown
in Fig. A1b. For r > 0.093R in the solar model with the
diffusion overshoot model, the mixing is weak and the abun-
dance is dominated by the preceding local burning of hy-
drogen. As shown in Fig. A1b, for r > r1, the grey line
is located left of the black line, indicating that lov,dif , for
EDOM, is shorter than lov for COM in the earlier stage. This
is because dlov,dif/dt > 0 as shown by equation (A1), while
lov ∝ rcz in the classical overshoot model and rcz decreases
with age due to the retreat of the convective core such that
dlov/dt < 0; by assumption lov,dif = lov at the present so-
lar age. The same reason leads to the difference of the mass
of the convective core between COM with αov = 0.25 and
EDOM with logC = 0 and log θ = 2.53 as shown in Fig. 1.

For 3He, τn ∼ 1013s is less than the stellar age, thus τ =
τn ∼ 1013 s, q ≈ 4 × 10−10, x ≈ 16, D(r1) ∼ 105 cm2 s−1,
and r1 is about 0.087R. This is consistent with the results
shown in Fig. A1d. In the region 0.087R < r < 0.093R in
the solar model with the EDOM, the mixing is weak and
the abundance gradually changes to its nuclear equilibrium
abundance, at the given hydrogen abundance.

For 7Be, τ = τn ∼ 107 s, q ≈ 4 × 10−4, x ≈ 4.7,
D(r1) ∼ 1010 cm2 s−1, and r1 is about 0.078R. This is a very
short lov,dif as shown in Fig. A1d. For r > 0.08R, the 7Be
abundance transitions to nuclear equilibrium with the 3He
abundance, decreasing with decreasing temperature, except
at the increase in X(3He) in the region 0.09R < r < 0.093R.
An interesting result is that the effect of overshoot on 7Be
with EDOM is small so that the 8B neutrino fluxes of the
EDOM solar models are systematically higher than those of
the COM solar models, as shown in Section 5.2 (see Fig. 5).

The deuterium and 7Li abundances are shown in Fig. A1c
and f. Since their very short burning timescales, they are
in nuclear equilibrium. The deuterium abundance related to
the hydrogen abundance and negatively correlated with tem-
perature. The 7Li abundance closely tied to the abundance
of 7Be with a scaling function that increases with decreas-
ing temperature. Consequently, it follows the dip in the 7Be
abundance for 0.08R < r < 0.09R in the EDOM case.

We note that in our treatment, the COM is different from
the model with an artificially fully mixed convective core and
overshoot region. The latter leads to a complete mixing for
all element even deuterium and 7Li. However, that is unrea-
sonable. For 7Li, since its burning time scale is 103 s and the
size of the core is 5 × 109 cm, an efficient mixing requires
a characteristic convective speed 5 × 106 cm s−1, i.e., Mach

0.1. Owing to the high density of the convective core, only a
very small superadiabatic gradient is required for convective
energy transport, such that the weak buoyancy cannot accel-
erate the fluid to a speed comparable with the sound speed.
For deuterium, the characteristic convective speed required
for efficient mixing is Mach 100 or 16% of the speed of light.
This is obviously unreasonable.

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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